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SUMMARY 

In this paper the superposition technique for a potential flow around an aerofoil is investigated in the complex 
plane. The control of the circulation around the aerofoil by satiseing the Kutta condition at the flow field points is 
described. 
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1. INTRODUCTION 

Potential flow calculations are an important part of a potential flow/boundary layer coupling method 
for an aerofoil.”2 These calculations are repeated together with the boundary layer calculations until a 
convergence is obtained. If a complete analysis or design problem is considered at several angles of 
attack, the numbers of iterations and potential flow calculations may amount to several hundred. 
Therefore the speed and accuracy of a coupling method depend on the speed and accuracy of the 
potential flow calculation method used. 

The incompressible potential flow around an aerofoil is usually calculated either by a conformal 
mapping method or by a panel method. The panel methods try to solve some integral forms instead of 
the governing Laplace equation. For this purpose the integral equation is converted to a system of 
linear equations by dividing the aerofoil surface into small panels. The coefficient matrix of the 
resulting system of equations depends only on the aerofoil geometry, while the right-hand side depends 
on the free flow  condition^.^.^ 

A panel method can be applied directly at any angle of attack for an aerofoil. However, a 
superposition technique is useful if several angles of attack are considered. With this technique, first 
the solutions for the noncirculating flows around the aerofoil in the uniform flows parallel and vertical 
to the chord and secondly the solution for the flow around the same aerofoil in a circulating h e  flow 
are obtained. Then the complete solutions at different angles of attack are obtained easily by 
superposing these simple flow solutions. Furthermore, the simple flows are solved simultaneously, 
since their coefficient matrices are the same. In conclusion, the superposition technique saves on 
computing time compared with a direct solution. 

This classicial superposition technique is not only important when different angles of attack are 
considered, but may also be advantageous for some coupling techniques using a panel method for 
potential flow calculations. If the coupling method does not change the aerofoil geometry for 
calculating the equivalent inviscid flow (e.g. by representing the boundary layer with a suction or 
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blowing on the aerofoil surface), the coefficient matrix does not change during all the iteration steps. 
Thus the calculation of the inverse of this matrix once at the very beginning of the coupling procedure 
is sufficient. This also saves on computing time. However, this easy procedure is possible only if a 
superposition technique is used, since the circulation around the aerofoil is changed at each step of the 
iteration depending on the boundary layer calculation results. 

Although the superposition technique in panel methods is used in some computer codes, the detail 
of the technique seldom appears in the literature. Therefore in this paper the logic and a formulation of 
a superposition technique are given. The control of the circulation around an aerofoil by applying the 
Kutta condition at the flow field points (not on the aerofoil surface) is described. The complex plane is 
preferred because of the ease of formulation. For this purpose a panel method developed in the 
complex plane by Yiiselen' is taken as the basic panel method. 

BASIC PANEL METHOD 

The complex conjugate velocity at any point z of the flow field around an aerofoil in the complex plane 
(Figure 1) can be written as 

where 

w, = V,eia = V,  cos a + iV, sin a, (2) 

420) = 4 z o )  + iY(Z0). (4) 

Here V,  and a are the free flow velocity and the angle of attack respectively, zo represents the aerofoil 
surface points, 6 is the slope angle at these points, CT and y are the source and vortex strengths at the 
surface points respectively and a superscript asterisk indicates the conjugate of any complex variable.' 

Analytical calculation of the integral in equation (1) is nearly impossible, since the analytical 
representation of the surface shapes of the aerofoils and the singularity distributions is usually not 
possible. Therefore in any panel method the aerofoil surface is divided into small panels (Figure 2). 
The integrals at each panel are calculated separately by making appropriate assumptions on the panel 
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Figure 1. Flow field in complex plane 
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1 

Figure 2. Surface panels 

geometry and the singularity distributions. Thus the complex velocity at point z is written in terms of 
some complex coefficients Cii and unknown complex singularity strengths vj as 

N 

j = 1  
w(z) = w, + c q v j ,  

where N is the number of panels. The coefficients C, are dependent on the co-ordinates of end points 
and the control point of each panel, the panel geometry and the singularity distribution at each panel. 
The coefficients for linear singularity distribution along straight line panels are given in Reference 5.  

In a co-ordinate system based on the tangential and normal directions of the aerofoil surface at any 
pj control point, equation ( 5 )  can be written as 

* 
where e$ = $ C$ and V, and VNi are the tangential and normal velocity components respectively. If 
there is a suction (or blowing) on the aerofoil surface representing the boundary layer, the surface 
boundary condition at each control point gives the system of equations 

where UN, is the suction velocity. If there is no suction (solid boundary condition), UN, = 0. 
The number of unknowns in the system of equations (7) is twice the number of equations. Therefore 

additional assumptions are necessary to close the system. An effective approximation is to take a 
parabolic trapezoidal vortex distribution (linear on each panel but parabolic along the aerofoil surface; 
Figure 3). Thus the vortex strength at the control point of any panel is 

where the coefficients of the parabolic distribution, 4 are defined in terms of the distance s on the 
aerofoil surface’ as 
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0.5 s = s / s  
7 

Figure 3. Parabolic tranezoidal vortex distribution 

Equations (6) and (7) then become 

1.0 

There is still an extra unknown in the system of equations (1 1). An additional equation is obtained 
fiom the well-known Kutta condition. As a simple application of this condition for the cases not 
containing any suction on the surface, the tangential velocities at the control points of two 
neighbouring panels of the trailing edge are assumed equal, i.e. 

VT, = -vT,, (12) 

where the negative sign is due to the integral direction on the aerofoil. 
For the potential flow/boundary layer coupling techniques representing the boundary layer with a 

suction, the application of the Kutta condition is sometimes preferred at the points occurring in the 
flow field (on the displacement surface, for example). 

SUPERPOSITION TECNIQUE 

Since the Laplace equation is linear, simple flow solutions can be superposed to obtain more 
complicated potential flow fields. This means a summation of the complex potential functions of 
simple flows in the complex plane to obtain the solution for a more complex flow: 

f ( z )  = f ” ) ( Z )  +.P(z) + f 3 ) ( z )  + . . . (13) 

Taking the derivative and then the conjugate of this last equation, a similar relation is obtained for the 
complex velocities: 

W(Z) = w(’)(z) + d2)(=) + d3) ( z )  + . . . . (14) 
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On the other hand, recalling equation (2) for the free flow velocity, equation (1 0) can be Written as 

The third term on the right-hand side of this equation depends only on the aerofoil geometry and the 
source strengths, while the other terms depend on the free flow conditions and the circulation around 
the aerofoil (i.e. vortex strength). Thus it is very convenient to Write the complex velocity as the 
summation of some simple flows as follows: 

where 

The first two equations represent the noncirculating flows around the aerofoil in a uniform parallel 
flow, with a velocity V ,  cos a parallel to the chord and a velocity V, sina vertical to the chord 
respectively. The third equation is for the circulating flow of strength ye (Figure 4). 

+ 

Figure 4. Superposition of simple flows 
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These equations can be made independent of the free flow conditions and the circulation by dividing 
the two sides by related values: 

Here the source strengths are also non-dimensional: 

iC*d. 'I J )  . 

Applying the surface boundary condition for each of the simple flows, the 
equations is obtained: 

N 

j =  I 
c ~m{q}i$l)  = -Im{r?} + u ~ ,  (i = 1,2, . . . , N ) ,  

(19) 

following system of 

The most important feature of these equations is of course their complete independence of the free flow 
conditions. Furthermore, this system of equations can be solved simultaneously by calculating the 
inverse of only one of the influence coefficient mamces, since the coefficient matrix of each system is 
the same. 

The tangential velocities for the simple flows and the superposed flow are then 

vTi = V, cos a + q) V ,  sin a + T)yc. 
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However, for the last equation we need a value for ye. The value of yc is calculated by applying the 
Kutta condition. If the tangential velocities at the control points of neighbowing panels of the trailing 
edge are made equal, this value is 

GENERAL APPLICATION OF THE KUTTA CONDITION 

The application of the Kutta condition by equating the tangential velocity component on neighbouring 
panel control points of the trailing edge, as seen in the previous sections, is easy if there is no suction 
or blowing on the aerofoil surface. For the suction case, if the Kutta condition is applied at the flow 
field points (e.g. at the displacement surface points), a special investigation is necessary, since the 
directions of the flow at these points are not known. 

Taking Zu and Z, as the Kutta condition control points at the upper and lower surfaces of the 
aerofoil, Wu and W, are the complex velocities and qu and qL are the resulting velocities at these 
points respectively (Figure 5).  The Kutta condition is then 

4u = qL (24) 

J(wvw5) = J ( W L W t ) .  (25) 

or, since q = IwI = J(ww*), 

The equality is correct also for the squares of the two sides of this relation. 
On the other hand, recalling the superposition technique described in the previous section, the 

complex velocity at any point of the flow field can be written as a superposition of some simple flows 
as follows: 

w = w(') V, cos a + 4') V, sin a + i d 3 ) y C  (26) 

or 

where 

The square of the velocity is then 

Figure 5. Kutta condition control points 
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Applying the Kutta condition under these conditions, the following second-degree equation is 
obtained: 

A$ + 2Byc + C = 0. (30) 

The positive root of this equation is 

yc = [ -B + J(B2 - AC)] /A,  

where 
4 3 )  2 A = (4:3')2 - ( q L  1 

c = (G"l2 - (id2 
and q and 4 are the speeds in the simple flows. 

RESULTS AND CONCLUSIONS 

The formulation proposed above for the superposition technique was tested on several Karman-Trefftz 
and Joukowsky aerofoils.6 Examples are given in Figure 6 and 7 respectively for a symmetrical 
Joukowsky aerofoil with a thickness ratio of 0- 10 and for a 5% cambered Karman-Tre& aerofoil with 
a thickness ratio of 0.15. The results for an angle of attack of 4" coincide quite well with the analytical 
results. 

Another example, for an NACA 4412 aerofoil at 4" angle of attack, is given in Figure 8, as 
compared with the direct application of the complex panel method. Numerical results of the two 
applications are exactly the same. 

The technique for the application of the Kutta condition at the flow field points was also tested on an 
NACA 0012 symmetrical aerofoil at 4" angle of attack. For this application the superposition 
technique for the complex panel method is coupled with a boundary layer code based on the Cebeci- 
Smith method.' In Figure 9 the results obtained by the potential flow calculation and the 
viscous/inviscid coupling method after 24 iterations are given. 

Joukowsky Aigoil 

Figure 6. Application of superposition technique on a Joukowsky aerofoil 
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Figure 7. Application of superposition technique on a Karman-Tre~ aerofoil 

NACA 4412 Airfoil 
3 .  00 - 

I - c p  

Figure 8. Application of superposition technique on an NACA 4412 amfoil 

NACA 0012 Aifloil 
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Potential flow -7 
Viscoudlnvrscid coupling 
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Figure 9. Application of superposition technique in a coupling method 
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All these example applications show that the formulation given for the superposition technique 
works correctly and effectively. 
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